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Abstract. Bipedal robots can walk and run on different terrains and show great 
capacity in fast-moving, however, it’s still a daunting challenge for them to 
achieve highly dynamic whole-body motions such as jumping. In this paper, we 
propose a method to learn high jump skills for humanoid robots, and the validi-
ty of the method is proved in simulation on the Ranger Max humanoid robot 
model. Both 2D and 3D jumping locomotion for the one-legged and two-legged 
Ranger Max robots are generated naturally and stably with different scales of 
maximum motor output torque limit. A curriculum learning strategy inspired by 
the idea of “recovery from injury” to make the learning of the high jump more 
efficient for “weaker” robots is also proposed and confirmed by the simulation 
experiment. 
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1 Introduction 

The ability to demonstrate high athletic performance is one of the most attractive 
goals for bionic robots, and the high jump is a typical locomotion that demonstrates 
strength and control. The wheeled robot Handle developed by Boston Dynamics 
stands 6.5 ft tall and jumps 4 feet vertically [1]. A tiny robot designed by Dr. Elliot 
Hawkes et al weighs less than a tennis ball and can reach 31 meters, which is higher 
than any creature in the world [2]. Bipedal robots are often designed as general-
purpose mobile robots which are required to perform a wide variety of tasks so their 
physical structures are not designed for one or a few specific actions. Therefore, how 
to control a robot flexibly and exert the maximum capacity of the existing mechanical 
structure and motors in challengeable locomotion like the high jump becomes an im-
portant research content. 

There are mainly two ways to control a bipedal robot in general, the first one is the 
model-based trajectory optimization method which has led to many mature bipedal 
control algorithms. In the classical zero-moment point (ZMP) method [3], the robot is 
always seen as a simplified linear inverted pendulum model (LIPM) or spring-loaded 
inverted pendulum (SLIP), whose stability is guaranteed by making the ZMP lie with-
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in the interior of the supporting polygon during walking. Hybrid zero dynamics 
(HZD) is another popular framework [4-6]. It works by designing a set of virtual con-
straints that are enforced via feedback control of the actuated degrees of freedom 
(DoF).  Model Predictive Control (MPC) is by far the best concerned model-based 
optimization approach to generating bipedal locomotion [7-11]. Highly dynamic 
movements such as jumping and running can be performed and robustness properties 
against unpredictable external disturbances increases due to its previewing ability in 
the prediction horizon. Though notable achievements have been made on advanced 
humanoid robots like Atlas [12], these model-based optimization methods have their 
disadvantages. An accurate model is always required and the computational cost is 
relatively high. Planning failures may occur due to unpredictable external disturb-
ances in complex environments and model mismatch, which is more likely to happen 
on bipedal robots that are less stable compared to quadruped robots. 

The data-driven method based on reinforcement learning (RL) provides a second 
solution. Artificial intelligence does well in solving high-dimensional, multiple-input-
multiple-output problems. The agents continuously interact with the environment and 
learn from the reward feedback automatically, network designing, reward setting, 
curriculum designing, and engineering problems of sim-to-real become the new chal-
lenges. Some effective reinforcement learning frameworks have been proposed to 
handle continuous control tasks, such as Deep Deterministic Policy Gradients 
(DDPG) [13], Trust Region Policy Optimization (TRPO) [14], Actor-Critic with Ex-
perience Replay (ACER) [15], and Proximal Policy Optimization (PPO) [16]. Duan et 
al integrated learning a task space policy with a model-based inverse dynamic con-
troller and demonstrated a successful sim-to-real transfer on Cassie [17]. Li et al pre-
sent a model-free RL framework that can be transferred to a real robot with a gait 
library of diverse parameterized motions based on HZD [18]. Xie et al describe an 
iterative design approach with transfer learning and get robust locomotion policies 
[19]. Their robot even completed the 100 meters in 24.73 seconds sprinting to 100-
meter World Record. 

The advantages of RL make it a useful tool to solve the high dynamic bipedal mo-
tion problem, and we choose it as the basic framework to design a humanoid high 
jump method.  

2 Related Work 

2.1 Proximal Policy Optimization 

PPO [16] is a kind of modified policy gradient method that strikes a balance between 
ease of implementation, sample complexity, and ease of tuning. It tries to compute an 
update at each step which minimizes the cost function and ensures the deviation from 
the previous policy is relatively small at the same time. The objective function of PPO 
is given as: 

  (1) 
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where  is the policy parameter,  denotes the empirical expectation over timesteps, 
 is the ratio of the probability under the new and old policies respectively,  is the 

estimated advantage at the time  and  is a hyperparameter. The novel clipped ob-
jective function was proven to outperform most other RL methods on almost all the 
continuous control problems, showing its excellent ability in the field of continuous 
robot motion control. We choose to do our research with a PPO trainer. 
 
2.2 High Jump 

A robot jumps by launching its body into the air with a single stroke of its joints. The 
amount of energy delivered in this single stroke determines the jump height and dis-
tance. The high jump which focuses mainly on the maximum jump height, is a good 
way to test the explosive strength and balance ability of a robot control method. 

Xiong et al identify a spring-mass model from the kinematics and compliance of 
the 3D bipedal robot Cassie. Jumping and landing motions are planned based on leg 
length trajectories optimized via direct collocation to synthesize a control Lyapunov 
function based quadratic program. Whole body rotation in the underactuated flight 
phase is prevented through an additional centroidal angular momentum output in the 
control function. A ~7 inches (17.78cm) ground clearance and ~0.423s air-time are 
finally achieved. [20]. Kojima et al design a high-specific stiffness mechanical struc-
ture for dynamic jumping motions which is also lightweight. They achieve a 0.3m 
height in the jumping test [21]. Qi et al propose a vertical jump optimization strategy 
for a one-legged robot. Full-body dynamics are considered in their method to track 
the trajectory with virtual force control and human jumping motion capture data is 
collected and used as the reference center of mass (CoM) trajectory to realize a cer-
tain jumping height. A 50 cm jump is realized on a real robot platform [22,23]. Chen 
et al clarify the mathematical modeling and motor-joint model with practical factors 
considered. They optimize the hopping performance of the robot by maximizing the 
output power of the joint [24]. 

3 Preliminary 

3.1 Problem Formulation 

Although bipedal robots show great capacity in fast-moving, it’s still a daunting chal-
lenge for them to achieve highly dynamic whole-body motions such as high jump 
which is of great importance to improve the agility and adaptation of humanoid ro-
bots. Jumping is a hybrid dynamical phenomenon with ground and flight faces in 
essence, and existing control methods for jumping are almost model-based. Among 
previous works, an offline whole-body trajectory is always generated before jumping, 
and online control algorithms are used to ensure stability. Different controllers are 
elaborately designed for different phases, such as trajectory optimization designed for 
the launching phase, momentum control designed for the flight phase, and viscoelastic 
control designed for the landing phase. Except for the difficulty of the specific con-
troller design, inherent intractability lies in the model-based control method:     
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1)Model mismatch: model mismatch introduced by modeling simplification, meas-
urement errors, and load variation causes instability of the system. Also, specialized 
controller designs are difficult to replicate directly with other humanoid robots with 
different mechanical structures; 

2)Lack of flexibility: more than needed degrees of freedom are always wasted on 
CoM trajectory following as well as other artificial constraints instead of pursuing 
higher jump height; 

3)Limitation of locomotion: the jumping ability is limited by the reference locomo-
tion but not the physical properties of the robot itself. It’s hard to bring out the full 
potential of the robot based on a manual planning trajectory;  

4)Unnatural jumping posture: the relaxation of the knee and ankle joints is a com-
mon phenomenon in the flight phase of animal jumping. However, they are always 
bent to keep the robot controllable in a model-based method. It’s very difficult to 
summarize certain rules artificially that could generate natural and fluid body move-
ment. 

Considering the questions above, it’s necessary to propose a relatively simple con-
trol framework to achieve natural jumping movements and make the jump as high as 
possible. Therefore, we design a high jump learning method based on PPO, and the 
main research contents are as follows: 

1) Presenting a reinforcement learning method to generate natural and stable high 
jump locomotion for humanoid robots, and verifying it in the simulation on Ranger 
Max robot. 

2) Analyzing the influence of different motor output limits on jump height and ex-
ploring a curriculum learning method to speed up locomotion generation and increase 
jump height. 
 
3.2 Robot Model 

The robot model used in this article is based on the open-source humanoid robot 
Ranger Max, which is known as Tik-Tok before [25]. We follow the original design 
(Fig. 1 (a)) and make some minor structural changes to our robot. One leg of the real 
robot has been built in our laboratory (Fig. 1 (b)). One-legged and two-legged simula-
tion models have been built in Unity (Fig. 1 (c), (d)), and the basic specifications of 
Ranger Max robot hardware are shown in Table 1.  

 

Fig. 1. Ranger Max humanoid robot. (a) The complete Ranger Max robot developed by Ruina 
et al. (b) One-legged Ranger Max robot we are building. (c) One-legged simulation model in 
Unity. (d) Two-legged simulation model in Unity. 
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Table 1. Table captions should be placed above the tables. 

Link Length/Width Weight Joint range (°) 

pelvis  2kg - 

hip  1kg (-20, 0) left / (0, 20) right 

thigh  6.4kg (-50, 50) 

shank  1.3kg (-110, 10) 

foot  0.3kg (-50, 50) 

 
Each leg of Ranger Max has four controllable joints. A hip abduction-adduction 

(HAA) joint, a hip flexion-extension (HFE) joint, a knee flexion-extension (KFE) 
joint and an ankle plantar flexion and dorsiflexion (APD) joint. A one-legged robot is 
confined to move in a two-dimensional plane so that the HAA joint is omitted. The 
angle ranges of joints in the jumping task are indicated in Fig. 2 (a), and (b), and the 
detailed values are listed in Table 1. Height reference points are introduced to meas-
ure the jump height of the robot. The vertical distance of the point and its initial posi-
tion will be recorded as the jump height as shown in Fig. 2 (c). Unlike some bipedal 
robots, the mass of Ranger Max is not concentrated in the pelvis but distributed on 
each link more evenly. Since most motors are mounted on the thigh links, they are the 
heaviest parts of the lower body which is quite similar to the human being. 

 

Fig. 2. Structural sketch of Ranger Max. (a) Structural sketch of two-legged robot model. (b) 
Structural sketch of one-Legged robot model. (c) Jumping height measurement method. 

4 Control Method 

4.1 Overview 

An overview of our method is given in Fig. 3. The main objective of the presented 
method is to make the robot jump naturally and stably while achieving as high as 
possible in limited training steps. We use a curriculum learning (CL) [26] strategy 
inspired by “recovery from injury” (Fig. 3 A), and a simple joint position PD control-
ler with a torque limiter is proposed as the control architecture.  



6 

 The idea of “starting small” and gradually presenting more complex is called cur-
ricula summarized from human education. Unlike the human body which grows 
stronger during aging, the mechanical structure of a robot is fixed once it’s designed 
and built, however, the maximum power of joints is easy to limit. Thus, we simplify 
the task by making the robot stronger rather than reducing task difficulty directly. A 
specific curriculum for the high jump task is designed: we assume that the robot is an 
athlete who used to be strong and mastered in the high jump, he or she recovers the 
jumping ability quickly after injury with previous experience with a weaker body.  

 

Fig. 3. Overall control framework. Left: Policy training. Right: Control architecture. 

4.2 Training Parameters 

An observation vector of 136 dimensions is set as the input of the network. It is de-
fined at the time  as 

  (2) 

where  is the vertical jumping height measured with the help of the reference point 
(see Fig. 2 (c)).  is the target direction pointing forward and  is the deviation 
angle from the target direction. These two values are not fully used since we are only 
doing a high jump in place, but we still put it here as it can be useful when facing 
direction is added to the reward.  is a 1×9 vector of Boolean values that demon-
strate if the links touch the ground.  and  denotes the positions and velocities of 
the leg links origin in the pelvis coordinate system. The position of the pelvis itself is 
not included.  and  are the rotation presented in quaternions and angular veloci-
ties in Euler angle notation of all links in the global coordinate system.  is a vector 
of all the joint torques. The terrain of the environment is not considered yet since we 
start with a simple flat ground. 

In a high jump task, height and stability are the most concerned factors. An inten-
sive reward in real-time allows the agent to learn faster. The reward function consists 
of three components: (1) a height reward  with a restriction of the horizontal 
speed of the pelvis. (2) a penalty  for pelvis shaking and (3) a penalty  for 
the robot falling over. 

  (3) 
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  (4) 

  (5) 

  (6) 

where  is the state-action pair,  and  are the jump height reward gain and 
angular velocity penalty gain respectively.  refers to the reward function with 
the variable of pelvis height  when the robot reaches a preset jump-ready height 

 and  refers to the reward function when the robot is squatting too much 
or about to fall recognized by a height constant . Their concrete form will be 
introduced in section 5.  and  are the pelvis velocity in the direction of  axis 
and  axis of the global coordinate. The action is only rewarded when linear veloci-
ties along these axes are within ±  to prevent a large horizontal movement. is 
the angular velocity of the pelvis about the  axis ( ).  is the penalty of 
the robot falling down which is triggered when the pelvis height or the height of left 
and right knees (  and ) is smaller than their minimum limitation . An 
episode is also ended when the robot falls. 

  (7) 

The action  is a 16-dimensional vector that consists of two parts as shown in equa-
tion (7): (1) the target position  for all 8 joints and (2) a limitation of motor 
output torque . Each element in  is normalized to [-1, 1] 
 
4.3 Curriculum Design 

 

Fig. 4. Curriculum Design. 

The idea of “recovery from injury” is used in the curriculum design. We implement 
this by taking a simple mapping from the pre-trained policy for a robot with enlarged 
maximum torque output to the actual “weaker” robot with smaller maximum torque 
output as shown in Fig. 4. The robot is first trained in stage 1 with a relaxed motor 
output torque limit , and after basic jumping skills are learned, mapping each ele-
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ment in the torque limitation part  from  to , where  is the 
actual motor output limit. 
 
4.4 Control architecture 

The joint torques are controlled by a simple position PD controller basically, while a 
torque limiter is added to restrict the output torques (see Fig. 3 B). We believe that a 
PD controller only will lead to some sudden movements when the target joint angle is 
far from the current joint angle causing unnatural and dangerous behaviors. Therefore, 
a second control variable  is introduced to help with a softer control method as 
shown in Fig. 4. Now the final torque signal used to control the joint becomes 

 (8) 

where  is the ith element in the torque vector   calculated by the target joint 
position and the PD parameters of the PD controller.  is the ith element in the 
torque vector  used to control the joints directly. 

5 Experiments and results 

The following problems are addressed in this section: 
1) Finding a suitable reward function for high jump training and demonstrating the 

feasibility of our control method; 
2) Comparing the learning rate of jump height under different motor output torque 

limits and verifying the effectiveness of the curriculum learning method proposed.  
To solve the first problem, we tried quite a few possibilities of function  and 

 in equation (4) and some empirical rules are found. A conservative reward like 
the jump height itself may lead to a timid policy in which the robot refuses to jump 
for fear of falling and keep trembling in situ. A radical form of reward like an expo-
nential transformation of the jump height causes desperate attempts. Robots would 
rather fall to the ground to achieve greater heights. We finally made a tradeoff be-
tween jump height and stability: a cubed form of reward is adopted as follows: 

  (9) 

We first train on a one-legged robot confined to its sagittal plane to eliminate the 
effects of lateral balance control. Three scales of motor torque output limit were cho-
sen. We do training with the motor output torque limit of 50Nm (relatively low), 
100Nm (normal), and 150Nm (relatively high) separately. Both three training gener-
ate natural and stable continuous jumping locomotion for a one-legged robot (see Fig. 
5) validating the effectiveness of our method. The maximum jump heights reach 
0.226m, 0.663m, and 0.920m respectively in a 30-million-step learning.  

The snapshots in Fig. 5 show that not only does the jumping height differs, but di-
verse jumping posture are also learned with different motor output torque limit. The 
leaning back posture, dorsiflexion of the ankle joint in the flight phase, and the quick 
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knee bend before touching the ground in the last line of the snapshots suggest that 
agents with different motor output torque limits may pick up different jumping skills.  

 

Fig. 5. Snapshots of one-legged jumping with different motor output torque limits. 

We save the model once every 5 million steps and do a 30-second jump test for 
each model to record the maximum jump height as shown in Fig. 6 (a). The jump 
height learning rate shows a trend of rapid increase first and then slow growth. The 
agent with a greater torque limit also learns stable jumping locomotion faster. Agents 
with torque limits of ±100Nm and ±150Nm generate stable jumping in the first 2.5 
million steps while the agent with a torque limit of ±50Nm achieves this until 5 mil-
lion steps. To find out if the experience learned in the more efficient learning process 
with a wider range of torque limit can be utilized to help with an agent with a tighter 
motor output torque limit, we implement our curriculum learning method described in 
section 4.3 on the robot. A 10-million-step pre-training with a motor output torque 
limit of ±100Nm and ±150Nm is done first, and another 20-million-step training 
with a limit of ±50N is done with a torque limit mapping described in section 4.3. As 
a comparison, a 30-million-step experiment with a limit of ±50Nm from beginning 
to end is  also completed. Results of the jumping height condition with and without 
the curriculum learning are shown in Fig. 6 (b). 

It can be found that the agent with curriculum learning gets a higher jump height. 
A 39% jump height growth is made from 0.236m to 0.391m when a curriculum with a 
torque limit from ±100Nm to ±50Nm is taken.  However, a smaller growth of 32% 
is made when a torque limit from ±150Nm to ±50Nm is made. The validity of the 
curriculum design is obvious while a higher pre-training limit may not lead to a better 
performance.   

We repeat the above experiment on the two-legged Ranger Max robot and come to 
very similar results. A curriculum learning with a 10-million-step first stage and a 20-
million-step second stage is done. Stable 3D jumping locomotion is generated suc-
cessfully with the curriculum as shown in Fig. 7. A 0.254m jump height is achieved 
with a ±100Nm to ±50Nm curriculum, while the agent without curriculum and with 
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a ±150Nm to ±50Nm curriculum even fails to produce a stable jumping strategy in 
30 million steps. This phenomenon shows that a robot with more strength learns sta-
ble jumping much faster than a weak one, and a suitable scale of motor output torque 
limit enlarging does help with locomotion generation, but an excessive gap may back-
fire. The results demonstrate that our method works on both 2D and 3D conditions, 
and taking a curriculum learning with a wider range of torque limit first is beneficial 
for high jump locomotion generation and performance optimization. Our curriculum 
design provides a way to achieve high dynamic performance for robots with limited 
power. 

 

Fig. 6. The trend of jump height. (a) Maximum jump height of a one-legged Ranger Max robot 
with different motor output torque limit. (b) Comparison between normal training and curricu-
lum training of a one-legged Ranger Max robot. (c) Maximum jump height of a two-legged 
Ranger Max robot taking a curriculum learning. 

 

Fig. 7. Snapshots of two-legged jumping. 

6 Conclusion and Future Work 

In this paper, we propose a method to learn high jump skills for humanoid robots, and 
the validity of the method is proved on the Ranger Max humanoid robot model in 
simulation. Both 2D and 3D jumping locomotion for the one-legged and two-legged 
robots are generated naturally and stably with different scales of maximum motor 
output torque limit. A curriculum learning strategy inspired by the idea of “recovery 
from injury” to make the learning of the high jump more efficient for “weaker” robots 
is confirmed by the simulation experiment.  

The real robot of Ranger Max is being built in our laboratory. The next step for our 
work is to verify the feasibility of our method on the real robot. This paper demon-
strates a theoretical possibility of how high a robot can jump under certain drive ca-
pability constraints, while it’s far more complex to achieve the jumping locomotion in 
the real world. Many sim-to-real problems need to be considered. The mathematical 
motor model should be built to imitate its real response performance in a simulation 
environment. Second, observations need to be filtered before being fed to the neural 
network and sensing errors should be introduced during training to improve the ro-
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bustness of the strategy. Engineering problems like collision protection and fall pro-
tection should also be addressed. 

The proposed curriculum learning of “recovery from injury” may not be beneficial 
only for the jumping task, humans easily relearn movements they used to excel at 
even muscles deteriorate as they age, therefore more attempts at this kind of curricu-
lum on humanoid locomotion like balance keeping, obstacle crossing, and passive 
walking are worth exploring for us. 
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